HOMOLOGICAL ALGEBRA SOLUTIONS WEEK 1

ERIC Y. CHEN

1(a). Let $i: \mathbf{Z} \to \mathbf{Q}$ be the natural inclusion. To show that i is epi in the category of rings, consider two distinct morphisms of rings $f, g: \mathbf{Q} \to R$ to some target ring R. Since $f \neq g$, there is some rational number $a/b \in \mathbf{Q}$ with $a, b \in \mathbf{Z}$ such that

$$f(a/b) \neq g(a/b)$$

Suppose towards a contradiction that f and g agree on integers; then multiplying the previous inequality by f(b) = g(b) gives

$$f(b)f(a/b) \neq g(b)g(a/b)$$

But the LHS of this inequality is f(a), while the right hand side is g(a), so we have a contradiction.

Let $i: \mathbf{Q} \to \mathbf{R}$ be the natural inclusion. To show that i is epi in the category of Hausdorff topological spaces, consider two distinct continuous maps $f, g: \mathbf{R} \to X$ to some target space X, and suppose $x \in \mathbf{R}$ is a point for which $f(x) \neq g(x)$. Since X is Hausdorff, we can find disjoint open sets $U, V \subset X$ such that $f(x) \in U$ and $g(x) \in V$. Considering their preimages under $f \circ i$ and $g \circ i$, we see that

$$(f \circ i)^{-1}(U) \cap (g \circ i)^{-1}(V) = f^{-1}(U) \cap g^{-1}(U) \cap \mathbf{Q}$$

is nonempty, since $f^{-1}(U) \cap g^{-1}(U)$ is an open set containing x, and $\mathbf{Q} \subset \mathbf{R}$ is dense (by definition of \mathbf{R} , for every real number x and every open set W containing x, there is always a rational number inside W). Thus, for any point $q \in (f \circ i)^{-1}(U) \cap (g \circ i)^{-1}(V)$ we have $f(q) \neq g(q)$, hence $f \circ i \neq g \circ i$.

(b). Let $f: A \to B$ be a morphism in the category of groups. If f is an injective set map, then for any two distinct morphisms $g_1, g_2: C \to A$ we can consider an element $c \in C$ on which $g_1(c) \neq g_2(c)$, and the injectivity of f would imply

$$f(g_1(c)) \neq f(g_2(c))$$

Thus, f is monic. For the opposite direction, suppose f is monic. To see that it is injective, for an arbitrary nonidentity element $a \in A$, consider the two distinct group homomorphisms

$$g_1: \mathbf{Z} \to A$$
 defined by $g_1(1) = a$ and $g_2: \mathbf{Z} \to A$ the trivial homomorphism

Since $f \circ g_1 \neq f \circ g_2$, we see that there is some integer n for which $f(a)^n \neq id_B$. In particular, $f(a) \neq id_B$, so f is injective.

2. To see that \mathcal{A}^I is a category, the only nontrivial thing to check is that morphisms in \mathcal{A}^I form a set. For this, we consider two functors $F, G \in \mathcal{A}^I$; by definition, the morphisms between F and G are natural transformations from F to G, i.e., for every $i \in I$ the data of morphisms

$$\eta_i: F(i) \longrightarrow G(i)$$

in \mathcal{A} satisfying some compatibilities as i varies. But such collections $\{\eta_i\}_{i\in I}$ embeds into the set of functions

$$\operatorname{Fun}(I, \sqcup_{i \in I} \operatorname{Hom}_{\mathcal{A}}(F(i), G(i)))$$

so the collection of natural transformations from F to G is itself a set.

To see that the Yoneda embedding $h: I \to \mathbf{Sets}^{I^{\mathrm{op}}}$ defined by

$$i \mapsto h_i := \operatorname{Hom}(\cdot, i)$$

is fully faithful, we need to show that the function

$$\eta: \operatorname{Hom}_{I}(i,j) \longrightarrow \operatorname{Hom}_{\mathbf{Sets}^{I^{\operatorname{op}}}}(h_i, h_j)$$

induced by h is injective, for every pair of objects $i, j \in I$. For this, consider $f, g \in \text{Hom}_I(i, j)$ two distinct morphisms; then $\eta(f), \eta(g)$ are natural transformations from h_i to h_j and to show they are not equal it suffices to present an object $k \in I$ such that

$$\eta(f) \neq \eta(g)$$
 as functions $h_i(k) = \operatorname{Hom}_I(k,i) \to h_i(k) = \operatorname{Hom}_I(k,j)$

For this, we consider k = i and the identity map $id_i \in \text{Hom}_I(i, i)$. Then

$$\eta(f)(\mathrm{id}_i) = f \neq g = \eta(g)(\mathrm{id}_i)$$

as we wanted.

3. We aim to show the adjunction between $\Delta : \mathcal{A} \to \mathcal{A}^I$ and $\lim_{i \in I} : \mathcal{A}^I \to \mathcal{A}$, i.e., a bijection between the sets

(1)
$$\operatorname{Hom}_{\mathcal{A}^{I}}(\Delta(a), F) = \operatorname{Hom}_{\mathcal{A}}(a, \lim_{i \in I} F_{i})$$

natural in a and F. By the universal property of $\lim_{i \in I} F_i$, morphisms from a to $\lim_{i \in I} F_i$ is in natural bijection with the set of morphisms from a to each F_i , compatible with the arrows in I. But this is the same as morphisms from the diagonal functor $\Delta(a)$ to F, hence we have (1).

Dually, we want to see an adjunction

(2)
$$\operatorname{Hom}_{\mathcal{A}}(\operatorname{colim}_{i \in I} F_i, a) = \operatorname{Hom}_{\mathcal{A}^I}(F, \Delta(a))$$

and the argument is identical. By the universal property of $\operatorname{colim}_{i \in I} F_i$, morphisms from $\operatorname{colim}_{i \in I} F_i$ to a is in natural bijection with the set of morphisms from each F_i to a, compatible with the arrows in I. But this is the same as morphisms from F to the diagonal functor $\Delta(a)$.

4. We need to produce an adjunction

(3)
$$\operatorname{Hom}_{\mathcal{B}}(Lx,y) = \operatorname{Hom}_{\mathcal{A}}(x,Ry)$$

natural in x, y, given the data of natural transformations $\eta : \mathrm{id}_{\mathcal{A}} \to RL$ and $\epsilon : LR \to \mathrm{id}_{\mathcal{B}}$. Starting from the LHS, we consider an arrow

$$(f: Lx \to y) \in \operatorname{Hom}_{\mathcal{B}}(Lx, y)$$

in \mathcal{B} . Applying R to this arrow gives an arrow

$$(R(f): RLx \to Ry) \in \operatorname{Hom}_{\mathcal{A}}(RLx, Ry)$$

Using η , we have an arrow $\eta_x: x \to RLx$, which we can post-compose with R(f) to obtain an arrow

$$(R(f) \circ \eta_x : x \to Ry) \in \operatorname{Hom}_{\mathcal{A}}(x, Ry)$$

This procedure $f \mapsto R(f) \circ \eta_x$ gives a function from the LHS to the RHS of (3). To see that it is a bijection, we consider the analogous procedure in the reverse direction:

$$\operatorname{Hom}_{\mathcal{A}}(x, Ry) \ni g \longmapsto \epsilon_y \circ L(g) \in \operatorname{Hom}_{\mathcal{B}}(Lx, y)$$

which we claim to be inverse to the first. To see this, we compute

$$\epsilon_y \circ L(R(f) \circ \eta_x) = \left(Lx \xrightarrow{L\eta_x} LRLx \xrightarrow{LRf} LRy \xrightarrow{\epsilon_y} y \right)$$

$$= \left(Lx \xrightarrow{L\eta_x} LRLx \xrightarrow{\epsilon_x} Lx \xrightarrow{f} y \right) \text{ by naturality of } \epsilon \text{ with respect to } f$$

$$= Lx \xrightarrow{f} y \text{ by assumption on } \eta$$

Similarly, we have

$$R(\epsilon_y \circ L(g)) \circ \eta_x = \left(x \stackrel{\eta_x}{\to} RLx \stackrel{RLg}{\to} RLRy \stackrel{R\epsilon_y}{\to} Ry \right)$$

$$= \left(x \stackrel{g}{\to} Ry \stackrel{R\eta_y}{\to} RLRy \stackrel{R\epsilon_y}{\to} Ry \right) \text{ by naturality of } \eta \text{ with respect to } g$$

$$= x \stackrel{g}{\to} Ry \text{ by assumption on } \epsilon$$